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A Class of Totally Positive Blending B-Bases

Laura Gori, Laura Pezza, and Francesca Pitolli

Abstract. Totally positive blending bases present good shape preserving
properties when they are used in CAGD. Among these bases there exist
special bases, called B-bases, which have optimal shape preserving prop-
erties. In particular, the corresponding control polygon is nearest to the
curve among all the control polygons; thus many geometrical properties
are similar to the ones of the curve. Examples of totally positive blend-
ing B-bases are the Bernstein polynomials and the B-spline basis. Our
purpose is to construct new classes of such bases starting from compactly
supported totally positive scaling functions.

§1. Introduction

One of the main goals in Computer Aided Geometric Design (CAGD) is to
predict or control the shape of a curve by studying or specifying the shape of the
control polygonal arc formed by certain points which define the curve, typically
the coefficients when the curve is expressed in terms of a particular basis. This
is possible when we choose as a basis a system of functions v = (vo,... ,Vn)

with suitable shape preserving properties. This means that the geometrical
properties of the curve in R2

n
7 (X)= P vi (X), X EI c ,(1

i=0

constructed on the control points Pi E R 2, i = 0,...,n, are implied by the
geometrical properties of the control polygon P0 ... P,. The shape preserving
properties of each representation (1) depend on the characteristic of the system
V.

The bases commonly used in CAGD, such as Bernstein bases, B-splines,
/3-splines, nonuniform rational splines (NURBS), are blending totally positive
systems. This means that the collocation matrix

M o (V0 -.. , Vf (V,(Xj))n 0 . (2X... ) X60
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for any sequence x0 < ... < x,, xi E I, i = 0,...,s, is totally positive (i.e.,
all its minors are non-negative), and the basis functions add to one, that is

n

Yvi(x)=1, xe1. (3)
i=0

The importance of blending totally positive systems is due to the fact that
they enjoy two properties which are usually demanded for curve control: the
convex hull (CH) and the variation diminishing (VD) properties (see, for in-
stance, [5,6]). As a consequence, in many ways the shape of the curve Y
mimics the shape of the control polygon PO ... Pr,. However, blending totally
systems usually do not enjoy a property which is also important: the end-point
interpolation (EPI) property.

Bases which simultaneously satisfy the VD, CH and EPI properties can
be obtained by considering blending B-bases [5].

Following [5], a totally positive (TP) system u of linearly independent
functions is said to be a B-basis if any totally positive basis v of the space U
generated by u satisfies the condition

v = uA, A nonsingular totally positive matrix. (4)

In [4] it was proved that if there exists a blending TP basis in U, then there ex-
ists a unique blending B-basis for that space. B-bases have optimal properties
in the geometric context [5], that is, in particular, the control polygon with
respect to the B-basis is nearest to the curve among all the control polygons
with respect to any other TP basis.

Some examples of B-bases are given in [4,5]; in particular, the B-spline
basis is the blending B-basis in the space of the polynomial splines of degree
m, on a given interval with a prescribed sequence of knots.

At this point, it is worthwhile to remark that in the case of cardinal
splines (knots at the integers), this basis is related to the cardinal B-spline
Nm, defined by N' = N`- 1 * NO, where No is the characteristic function of
[0, 1) and * denotes the convolution product (see, for instance [8]).

On the other hand, N m is a scaling function, that is the solution of the
functional equation

Im+1Nm (x)= >--- (mn lN- (2x -i), x E R. (5)

i=o

In this paper, we analyse the more general problem of the construction
of blending B-bases considering, instead of N m , a scaling function satisfying
a functional equation more general than (5):

W(x) = 1 aiW(2x - i), x G R, (6)
iE2Z
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where the mask a = {a}aiE satisfies the following conditions:

S a 2i+1-- 5a2, = 1. (7)
iE2Z iE2Z

It is known that a solution Vo of (6) exists if the mask a satisfies further
conditions, in addition to (7). In particular, if:

i) a is compactly supported on [0, m + 1] (with aoam+l # 0),
ii) the symbol

m+1

p(z) = 1 aiz' (8)
i=O

has roots with negative real part (Hurwitz polynomial),
then there exists [8] a unique scaling function solution of (6), whose support
is [0, m + 1], such that

E w(x-i)=1, x IR. (9)
iE23

Moreover, the functions {W(. - i), i C 2Z} are linearly independent and totally
positive on R.

The aim of this paper is to construct new classes of blending B-bases,
from a given system {J(. - i),i E Z}, where Z is a finite subset of 2Z and Wo
is a scaling function. In Section 2 some preliminaries are outlined, whereas in
Section 3 this construction is specialized to the new classes of scaling functions
introduced in [10]. Finally, Section 4 is devoted to some examples.

§2. Preliminaries

Let I = [a, /3], with a, ,3 integers, be a finite interval of R and let W be a
compactly supported scaling function, whose support is [0, L], associated with
a mask a enjoying the properties i) and ii) of the previous section. Then, the
system of n = / - a + L - 2 functions

:{•(x -i),a -nL+l_•i_/3-1}, xE[a,O], (10)

constitutes a blending (cf. (9)) TP basis in the space U, generated by itself,
and fulfils some interesting shape preserving properties.

Indeed, because of the properties of V mentioned above, the basis 4
satisfies the CH and the VD properties. Thus, 4 preserves monotonicity and
convexity, that is, any straight line cuts the curve yp no more often than
it cuts the control polygon [7]. Further shape preserving properties can be
deduced by the generalized VD property for TP bases (see [2]).

It is rather natural to wonder whether $ is a B-basis, too. To this end
we can use the following proposition from [4].
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Proposition A. A TP basis B ((n,... ,) is a B-basis if and only if the
following conditions hold:

inf Jý I(x) }in Cj(x) I 0 '= ,

for al i 5 j.

Clearly, Proposition A provides a useful test to check if a TP basis is a
B-basis. If the check fails, one can construct the unique blending B-basis of
the space Up by means of the procedure given in [4, Th 3.6 and Th. 4.2].

§3. Construction of B-bases of Scaling Functions

One of the main advantages of the cardinal B-spline as scaling function is
that its mask has an explicit expression (cf. (5)). A wide generalization of
the cardinal B-splines was developed in [10], where a new family of scaling
functions has been introduced by means of a new family of masks, which
have an explicit expression. These scaling functions depend on certain free
parameters, have prescribed smoothness and, as for the cardinal B-splines,
are compactly supported, totally positive and centrally symmetric. They were
introduced as follows.

Let H denote the set of all compactly supported and centrally symmetric
masks whose symbol is a Hurwitz polynomial. In [10] it was proved that a
mask a belongs to H if and only if its coefficients are of the type

k /2
^(m,k) k/ r)m +1--2r)

a, = br(m - ') i = 0,1,...,m+1, (11)

where m = 2,3,..., k is an even integer such that 1 < k < m, and

b~r) = b~r_) (k- 2r + 2 b(r_1) r=0,1...,K, K:= k-1,\i - lV•l r =01..K +KI=)-I, (12)

i =r + 1,...,K + 1,

and 0), i = 0,... , k, are such that

k(b-)r b b0)), r 10,1,.. k
K

0)= 2 k- -2 °0 ), (13)

i=o
det (b1 i 1,ij = 1,...,p) > 0, p= 1,...,k

(assume (l) =0 for i < 0 or i > 1).
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Due to the properties of a E H, the scaling function Pim,k, which is the
solution of the scaling equation

m+l

(Pm,k(x) Z a IPk) mk(2x - i), x E R, (14)
i=O

is compactly supported on [0, m+l] and centrally symmetric, and the functions

{'Pm,k( - i), i E 2Z} are linearly independent, normalized and TP. Moreover,
recalling that a scaling function belongs to Cr(IR) if and only if the symbol
can be factored as

p(z) = (z + 1)r'lqmr(z), qm-r(1) = 2', (15)

(see [8]), one can prove that POm,k G Crn-k(]R).

Remark. Choosing suitably the coefficients MO), the Wom,k reduces to the
cardinal B-spline of degree m, and the Wm,k can be viewed as a generalization
of the cardinal B-splines. In particular, for k = 1, the unique family of scaling
functions that we obtain are the cardinal B-splines. Moreover, in the case
when m = 3, the coefficients of the mask (11) are a subset of those of the
filters exploited by Burt and Adelson in vision analysis [1].

Following the procedure outlined in the previous section, any of the scal-
ing functions WPm,k can be used to construct a blending TP basis 4I"m,k defined
on a finite interval. Observe that a space is suitable for design purposes if it
has a blending TP basis.

By means of Proposition A, it is easy to show that the basis "in,k is
not a B-basis. Then to obtain a blending B-basis starting from the functions

VPm,k(X - i), we have to apply the procedure given in [4]. The corresponding
algorithm can be illustrated as follows. Let

where the values of Pm,k can be evaluated by means of the cascade algorithm
[12]. For j = 0,..., m - 2, define iteratively

+ j - inf/ u i_ 1 i=m)m-1, .. ,J +1,

u, i = j,j- 1,...,0.

Then, let
v0 r u Tn-i, a - M- ... ,0- 1,

and for j = 0, ... , m - 2 define iteratively

+ j - inf• v- •j i=O,l,...,#•-2-j,

vq, i =) f- 1 -j,...,)3 - 1.



124 L. Gori, L. Pezza, and F. Pitolli

The system ,!nk {bi := 0-,{i = a-rm,... , - 1}, forms a B-basis. The
system {dibi, i = a - M,...,/ - 1}, where di, i = a - m,...,/3- 1 are positive
constants such that da-mba-m + "". + do-lb3- 1 = 1, is the required blending
B-basis.

We remark that one of the difficulties in applying this method lies in the
evaluation of inf(uJ/uJ- 1 ) and inf(vq/vi 1). For instance, in the examples of
Section 4, the infimums has been evaluated by extrapolating the values that
the involved functions ui and vi assume in a suitable right neighbourhood of
a and in a suitable left neighbourhood of/3, respectively.

§4. Examples

For k = 2, the mask (11) depends on a free parameter b(°), which for com-

putational convenience we chose as a dyadic fraction: b•°) = 2 -h. Thus, the
explicit expression of the mask coefficients becomes

=2h) 2-h [r + 1 +4(2hm - )( -)'1 (16)

(j = 0,1,..., m + 1, m > 2, h > m - 1), which corresponds to the symbol

Pm,h(Z) = 2 -h(1 + z)m-i(z
2 + ( 2 h-m+2 - 2)z + 1). (17)

Observe that the second term in the mask (16) can be seen as a perturbation
of the mask of the cardinal B-spline to which (16) reduces when h = m.

Given the interval I = [a, /3], we can construct the family of blending TP
bases

lm,h = {0mh(X - i), a - M < i < /3 - 1}, (18)

where m > 2 and h > m - 1. In Fig. 1 the basis 43,4 defined on the interval
[0,4] is displayed (dashed line) together with the corresponding blending B-
basis (solid line) obtained by means of the procedure outlined in the previous
section.

For k = 4, the symbol p(z) depends on two free parameters, that is b°)0

and b(°), which again, for computational convenience, we choose as dyadic

fractions: b•°) = 2 -h, b(0) = 21-h; h, l ICR are arbitrary numbers such that
h > rn - 2 + log2 (1 + 21-1), in order to fulfil the third of (13). Thus, the
symbol has the form

Pm,h,l(Z) = 2 -h(1 + Z)m- 3 (Z4 + 2'Z 3 + ( 2 -m+4+h - 2 - 21+1)Z2 + 2 1z + 1)

(19)

where m > 3, and the coefficients a,,m , 0 < i < m + 1, of the corresponding
mask are

ah,) = 1 [(M+ 1 +(2 -4) (M--) +(2-m+4+h - 21+2) (m-3)]&'m =h i (t-4 i--1 i i--2 "

(20)
Also in this case, the mask of the cardinal B-spline N m can be obtained
setting suitably the parameters h and 1, that is, h = m and I = 2. In Fig. 2
the blending TP basis 45,6,2 defined on the interval [0, 6] is displayed (dashed
line) together with the corresponding blending B-basis (solid line) obtained.



Totally Positive Blending B-Bases 125

0.9

0.7-

0.6

0.5 V

0.3

0.2

0.1

00 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 2. The blending Bbasis B (solid line) and the blending TP basis 4)3,4
(dashed line) in the interval [0, 4].
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5,, (solid line) and blending TP basis 4D5,6,2
(dashed line) in the interval [0, 6].

Remark. When the scaling function is just N', the procedure outlined here
gives the basis of the cardinal B-splines as defined in [11].
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